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Abstract 

We compare the Implicit Monte Carlo (IMC) technique to the Symbolic IMC 
(SIMC) technique, with and without weight vectors in frequency space, for time- 
dependent line transport in the presence of collisional pumping. We examine the 
efficiency and accuracy of the IMC and SIMC methods for test problems involving 
the evolution of a collisionally pumped trapping problem to its steady-state, the 
surface heating of a cold medium by a beam, and the diffusion of energy from a 
localized region that is collisionally pumped. The importance of spatial biasing and 
teleportation for problems involving high opacity is demonstrated. Our numerical 
solution, along with its associated teleportation error, is checked against theoretical 
calculations for the last example. 

Key words: Monte Carlo, symbolic, photon, transport, teleportation error, X Ray 
Laser 
PACS: 42.55.Vc, 95.30. Jx, 95.30.K~ 

1 Introduction 

Time-dependent transport of radiation from resonance lines involving sponta- 
neous emission is used in the study of stellar atmospheres and in laser produced 
plasmas. The transport equation for photons is coupled to a time-dependent 
level population equation. This system of equations can prove difficult to solve 
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due to stiffness and the wide range of opacity inherent in an atomic line p r e  
file. Deterministic methods, known as complete linearization and accelerated 
lambda iteration[l], remain the methods of choice for applications in stellar 
atmospheres [2]. Nevertheless, Monte Carlo methods for radiation transport 
are still of more than historical interest. They can be valuable for X-ray laser 
applications and problems involving fast time variation and geometrical com- 
plexity not easily addressed by deterministic methods. In this paper we study 
test problems of simple geometry but of significant time dependence. 

Advances have been made in the area of Monte Carlo methods for this prob- 
lem. Encouraged by the success and robustness of implicit Monte Carlo tech- 
niques in local thermodynamic equilibrium, an implicit method was developed 
for line transport. While Implicit Monte Carlo (IMC)[3] works very well for 
most cases, it contains an effective scattering term that is inefficient when deal- 
ing with optically thick problems and that becomes negative for an atomic line 
in the gain regime. The Symbolic Implicit Monte Carlo (SIMC) method [4] 
was born in the notion that you can track and score spontaneously emitted 
particles with an unknown symbolic weight that is determined at the end of 
a time step. This removes the source of the ineffiency, the effective scattering 
term, from the IMC method. 

The extension of the SIMC method to thermal radiation in local thermody- 
namic equilibrium was first published in Ftef. [5]. A key feature of that work 
was noting that, once effective scattering is removed, one may track particles 
containing weight vectors in frequency space instead of using statistical sam- 
pling. Little demonstration of the advantage of weight vectors is offered in 
Ref. [5]. We demonstrate in this paper that a significant advantage results if 
one desires spectral information from the problem output. 

The stability and accuracy of the IMC and SIMC methods have been thor- 
oughly analyzed by N’Kaoua and Sentis [6], for the case of linear transport. 
Their analysis applies directly to the line transport problems considered in 
this paper. 

The goal of this paper is to compare the three methods (IMC, SIMC and 
SIMC with weight vectors in frequency space) for slab geometry. The codes 
that implement these methods model a two level atom in slab geometry with 
collisional coupling between levels and with incident radiation. We study the 
methods for a variety of problems in an attempt to compare and contrast 
the techniques under a wide range of conditions. We look at computational 
efficiency, accuracy and convergence of results as a function of time step, 
zone size and variable width zoning strategies. Sensitivity to spatial biasing 
for problems involving high opacity, which can have a significant impact on 
computational efficiency, is also explored. 
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Three test problems of study are presented in this paper. The first problem 
examines the performance of the methods for high opacity. The second test 
problem studies an opaque cold slab heated by monochromatic incident radi- 
ation that is off line center. The third test problem looks at a caie where the 
only source of photons is a central zone in a slab that is collisionally pumped. 
This test problem has a partial analytical solution that is used to verify the 
accuracy of the numerical methods. 

In this investigation, we demonstrate that the SIMC method does well in 
reducing noise for high opacity problems, and that the weight vector extension 
to SIMC provides a further substantial reduction in noise for problems where 
spectral information is desired. We also show that a geometric progression of 
zone sizes near an interface, with spatial biasing for spontaneous emission, 
is effective in improving the performance of these methods. Finally, we show 
that IMC is less susceptible to teleportation error than SIMC, but that this 
advantage evaporates as the time step size is reduced in order to obtain better 
temporal accuracy. 

2 Mathematical Method 

2.1 Derivation of Methods 

For a two-level system in slab geometry that includes collisional pumping 
between atomic levels, the radiation transport equation is 

where c is the speed of light, x is the position in the slab, p is the direction 
cosine of the radiation, v is the frequency of the radiation, f (p ,  v, x, t) is the 
photon number density distribution per unit atom density, n2(x, t) is the upper 
level population fraction, nl(x, t )  is the lower level population fraction, A21 is 
the spontaneous emission rate, $(a, v) is the Voigt line profile normalized to 
unit integral [7], and K12 = KN where K is the lower state absorption cross 
section and N is the atom number density. The coefficient K21 is defined by 

where g1 and 92 are the statistical weights for levels 1 and 2, respectively. As 
in [3], we consider the problem in the regime of complete redistribution and 
no physical scattering of photons. 
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The equations governing the atomic population fractions nl and 722 are 

and 

n1+ n2 = 1, (4) 

where C12 and C21 are rate constants for the collisional transitions 1 -+ 2 and 
2 + 1, respectively. One must also add in appropriate boundary conditions 
and initial state to the above equations. 

Using (4), equations (1) and (3) may be rewritten as 

and 

d n  
- dt = C12 - (C12 + C21+ A21) n + c [K12 - (KZl + K ~ ~ )  n] 

-1 0 

respectively, where n is the upper level population fraction. 

We can generate a finite differencing scheme in time for (6) by using the 
standard IMC technique [3]. We integrate (6 )  from to to to + At. In the spon- 
taneous emission and collision terms, we approximate n( t )  by n(t0 + At). In 
the absorption term, we substitute n(t0) for n(t)  and obtain 
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In the standard IMC technique [3], we substitute n(t0 + At) from (7) into the 
spontaneous emission term of (5) while using n(t0) in the absorption term. 
After some algebra, we obtain 

7cA214At af at + pcaf ax = @ 2 [n (to) + AtC12] + 2 

where y is defined as 

Equation (8) can be interpreted as a transport equation with a net absorption, 
and effective scattering, a,, contribution as given by 

aa(v> id(v> [ ~ 1 2  - ( ~ z l +  ~ 1 2 )  n(to>l (10) 

where the fraction, f, is given by 

f^= 1 + At (C12 + C2l) 
1 + At (GI + C21+ A21) ’ 

The fraction, f, determines how much effective scattering the problem con- 
tains. As i approaches unity, effective scattering vanishes. The disadvantage 
of this method is that the effective scattering term dominates the execution 
time in optically thick problems, resulting in very long problem runs. Reducing 
the effective scattering by making f approach 1 requires a smaller time step 
which also increases execution time and may reduce accurracy (see Sec. 2.5). 

Symbolic Implicit Monte Carlo [4] achieves implicit time integration using a 
different point of view. Photons produced by spontaneous emission are given 
a symbolic weight that remains undetermined until the end of the time step. 
The Monte Carlo procedure is the same as for IMC, except there is no effective 
scattering term. Particle scoring results in a linear system of equations that are 
solved for the upper atomic population fraction at the end of a time step. After 
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spatial discretization (see Sec. 2.3), the upper atomic population is updated 
with 

The quantities in the square brackets are short hand for the following integral 

In Eq. (13), the term containing FNi is the contribution to the change in 
upper state population within zone i from photons that were present at the 
beginning of the time step. They have therefore explicit, numerical weights. 
The term containing FSijn(t0 + At)j is a similar contribution coming from 
bundles with symbolic weights that were born in zone j during the time step; 
n(to)i is the upper level atomic population fraction in zone i at start of time 
step; n(t0 + At)i is the unknown upper atomic population fraction in zone i at 
the end of the time step; and V, is the thickness of zone i. For further details, we 
refer to Ref. [4]. Although the problems we present will involve small numbers 
of zones, and as a result the solution of small linear systems using a direct 
solver, there is some concern that the size of the linear system to be solved 
will become intractable using direct solution methods for problems with larger 
zone counts. Jacobi iteration [8], or other more sophisticated techniques, do 
very well at solving the system of equations given in (13) by using the values 
in the previous time step for the initial starting point. 

2.2 Weight Vector Extension 

Since SIMC removes effective scattering, it has a simpler Monte Carlo simu- 
lation process than that of standard IMC. While the frequency (energy) of a 
photon may alter how its weight is attenuated due to differing absorption cross 
sections, it does not alter the photon’s direction. If there is no real physical 
scattering, two photons with the same geometric starting conditions, differing 
only in frequency, will traverse the same path through the problem. This of- 
fers the possibility of treating frequency space deterministically by selecting 
a frequency discretization and associating a weight vector, indexed by this 
discretization, with the photon. 
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As was done in Ref. [5], we have extended the SIMC algorithm by associating a 
vector of weights, indexed by the frequency group, for each photon simulated. 
Instead of sampling the line profile for spontaneously emitted photons as is 
the case for IMC, this method constructs the vector of weights by assigning 
to each emission frequency the birth weight times the emission probability for 
that frequency. Unlike Ref. [5],  we do not collapse the weight vector to a single 
frequency at the end of time step. Instead, we carry the vector of weights 
through successive time steps, obtaining deterministic spectral information 
when the particle leaves the problem domain. 

The weight vector approach, in the absence of frequency dependent physical 
scattering (e.g. Compton Scattering), handles frequency space deterministi- 
cally. The role of Monte Carlo is then relegated to integrating the possibly 
complicated geometry of the problem. This approach has a significant ad- 
vantage over frequency sampling when the frequencies with a high emission 
probability are also strongly absorbed, with photons being transported else- 
where in the frequency spectrum. An example, demonstrated in this paper, is 
the case of line transport with a high opacity at line center where most of the 
transport occurs in the wings of the line. Using the weight vector approach, 
every photon samples the important frequency region where transport occurs 
and develops the correct output spectrum for the geometrical path being sam- 
pled. 

2.3 Uniform and Geometric Zoning 

We use a finite differencing method where the upper atomic population, n(z,  t ) ,  
is defined at the zone center, and for any time step, n(z, t )  is constant within 
each zone. We have tried two basic zoning schemes: equally spaced zones and 
spacing based on a geometric progression starting from the surface, where the 
thickness of the surface zone was close to one optical depth at line center. 
Figure 1 shows the whole problem divided into 7 zones where a is the smallest 
zone, b is the length of the slab, and ,O is a multiplicative factor. Only the solid 
lines are to be considered; the dashed lines lines show a subzone scheme that 
will be discussed later. We have found that this geometric spacing is essential 
to accommodate the boundary layer: a rapid change of the atomic population 
with depth near the surface and a rapid development of the spectrum of pho- 
tons leaving the surface. The SIMC method was more sensitive to zoning than 
the IMC method due to the portion of the absorption that is transmuted into 
effective scattering in IMC, but the same issues prevail in the limit of small 
time step size in IMC. 

When the problem of interest involves high opacity, little transport occurs at 
line center. The emission profile is strongly peaked at line center but so is the 
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Fig. 1. Geometric Zone and Subzone Construction 

absorption profile. As a result the more rarely produced frequencies (far from 
line center) travel further and account for much of the transport. This prop 
erty of line transport (strongly emitted frequencies are also strongly absorbed) 
makes optically thick problems quite sensitive to zoning and importance sam- 
pling schemes. Straightforward Monte Carlo sampling of the emission profile, 
only to have these photons absorbed, produces results with excessive noise. 

2.4 Biasing 

The first spatial importance sampling scheme we have investigated is directly 
tied to the zoning. For a problem with high opacity at line center, the small 
zones near the surface are very important to getting the transport and emission 
spectrum right, and therefore must be treated with more particles per unit 
volume than the thicker zones in the center of the problem. We have compared 
three schemes. The first is straightforward emission of particles with a constant 
density per unit volume (unbiased). The next scheme involves emission of 
an equal number of particles in each zone, which translates to a geometric 
weighting (based on the zoning scheme), in favor of the smaller zones near 
the surface. The final scheme involves a further geometric biasing within each 
zone so particles are born closer to interfaces where they have a greater chance 
of crossing between zones. 

Favoring of photons born near the surface of an opaque problem is key to 
obtaining an emission spectrum with low statistical error. For photons at line 
center, only those born near the surface have a good chance of streaming out 
of the problem and making a contribution to the output spectrum. Impor- 
tance sampling schemes improve the statistics of escaping photons that have 
a significant weight in the line center frequencies. 

A final step in importance sampling is required to efficiently treat the large 
central zones in problems with high line center opacity. If particles are emitted 
uniformly within the zone, one emits line center photons with high probabil- 
ity. These photons travel only a short distance within the zone before their 
weight shrinks to the point of being insignificant, and their particle history 
is terminated. A lot of computer time is expended computing a deterministic 
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equilibrium solution for the central zone, while getting very noisy results for 
the transport across zone boundaries, the quantity of interest. We found that 
just as the geometric zoning scheme with an equal number of photons in each 
zone improves the emission spectrum from a surface, a similar geometric sub- 
zone scheme to importance sample the regions near the surface of the interior 
zones reduces the noise in the transport between thick interior zones, resulting 
in an improved solution throughout the problem. 

The subzone biasing scheme is very similar to the zone biasing described above. 
One creates a subzone grid for each real zone in the problem, starting with 
a thin subzone at each surface of an interior zone. Successive subzone sizes 
are then obtained in a geometric progression by increasing the subzone size 
by a factor of 2, working inwards to the interior of the zone from both sides. 
The process is stopped when the remainder of the zone is just larger than the 
subzone on each side of it. In Fig. 1, we show this subzone configuration using 
the dashed lines. Just as was the case for zonal biasing, an equal number of 
photons is emitted in each subzone of a given zone. The weights of the photons 
emitted in each subzone are adjusted so that emitted weight is distributed 
uniformly across the zone and the correct total weight is emitted within the 
zone. 

We would like to note that one could employ directional biasing for photons 
born near a zone interface, favoring those heading in the direction of the 
interface; as that would contribute to transport between zones. We do not 
explore this in this paper but would expect an advantage to be generated for 
SIMC where there is no effective scattering. For IMC, the effective scattering 
term would produce angular mixing that would remove the advantage for this 
type of biasing. 

2.5 Photon Teleportation 

The equations governing the atomic populations are discretized in space and 
time, and one can expect some systematic errors to arise from this in a scheme 
where atomic populations axe constant within a zone. Photon teleportation is 
an error that arises when the absorption mean free path is small compared to 
the size of a zone, and the time step size is also small (in the case for IMC). 
As photons stream through a zone they are attenuated by absorption. If the 
opacity is high, photons entering one side of a zone are completely absorbed 
very near the boundary. The scoring of energy deposition, however, is done as 
if the absorption had taken place evenly across the entire zone. On the next 
time step, the corresponding spontaneous emission is handled assuming this 
uniformity in the zone. In effect, spontaneous emission occurs too early on the 
far side of the zone and energy is transported across the problem too quickly. 
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This error is aggravated in IMC if the time step size is reduced without a 
coordinated adjustment to the zone size. 

SIMC is much more susceptible to this problem than IMC. This is due to the 
reduced net absorption for IMC, where a portion of the physical absorption 
has been converted to effective scattering. This beneficial influence of effective 
scattering comes at the cost of increased execution time and evaporates as 
the time step size is reduced. In the limit that At goes to 0, IMC has the 
same teleportation error as SIMC. Teleportation error is properly addressed 
by decreasing the optical depth per zone. Unfortunately, reduction of zone size 
in order to reduce teleportation error leads to an increased running time as 
particles cross many zones in order to escape the problem. 

Photon teleportation has been observed in many previous studies. In fact, it 
is known that a finite difference discretization that assumes constant condi- 
tions within each zone and time step does not tend to the diffusion limit of 
the transport equation [6,%14]. A heuristic treatment informally known as 
source tilting [15], frequently used in IMC, could be used in SIMC to reduce 
teleportation effects. A self consistent, piecewise linear treatment of atomic 
population would obtain the correct diffusion limit. 

3 Example Problems 

We use three test problems to probe the properties of the implicit Monte 
Carlo methods studied in this paper. The first example is a simple collision- 
ally pumped system used in Refs. [3] and [4], although we push to a much 
higher opacity given the increased speed of modern microprocessors. The sec- 
ond example models the heating of cold media by incident radiation. The third 
example, which has an analytical solution available for comparison purposes, 
involves collisional pumping in the center of the slab. 

In comparing the methods, the two issues of concern are systematic and sta- 
tistical errors. The systematic error is an error in the numerical modeling of 
the physics that persists in the limit of large Monte Carlo particle count. It 
can be controlled by suitably refining the time step size, the choice of zones, 
the choice for frequency bins, or by modifying a given method to be higher 
order accurate in these parameters. The implicit transport methods exam- 
ined in this paper develop subtle interplay between these different controls 
on discretization error, and we will demonstrate this in the results presented 
below. 

Given the discretization parameters that control systematic error (and any 
importance sampling scheme) the number of Monte Carlo particles controls 
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the statistical error for a given problem run. In the limit of large particle count, 
the statistical error scales inversely with the square root of the particle count. 
This fact provides a means to evaluate the relative efficiency of the methods. 
We choose a particle count for each method that results in a given execution 
time (first confirming that the noise envelope, in fact the standard deviation 
of individual runs, is scaling like the square root of the particle count in each 
case) and then examine the noise envelope for 100 independent runs. The 
relative speeds of the methods, in the limit of large particle count, are then 
given as the square of the ratios of the measured noise envelopes. We would 
like to note that while this is a good way to compare the relative efficiency 
of the methods under examination, we do not suggest that this is how users 
should employ Monte Carlo applications in practice. 

Unless otherwise stated, each example will use 16 frequency groups, each of 
0.2 Doppler widths. In addition, the line profile, and therefore the frequency 
spectrum, is symmetric around zero and we take advantage of this symmetry. 
Spatially, each problem is divided up into 21 equally spaced zones unless noted 
otherwise. 

In the results below, problem output is always presented as the mean and 
standard deviation (not error in the mean) of 100 independent problem runs. 
The mean of a large number of problem runs provides the best opportunity 
to spot systematic error, while the standard deviation gives us a good idea of 
just how much scatter would be present in a single run along with a reliable 
way to estimate the computational efficiency of the method. 

3.1 Collisionally Pumped Trap 

The first example studied is a slab of unit width that is collisionally pumped 
and has a steady-state optical depth of 1000. The slab is uniform with equally 
spaced zones and has no incident radiation impinging on it. The problem input 
parameters, K12 and Kzl, were tuned in order to obtain the specified optical 
depth at line center. See Table 1 for the physical parameters. The pumping 
started at t = 0 and the problem was run until steady-state was reached. 

The main difference between IMC and SIMC is that IMC has effective scat- 
tering while in SIMC photons quickly stream through the problem and feel 
the full toll of absorption. Since relatively small changes, as a function of the 
position coordinate, are occurring in the middle of the slab while a high rate 
of change exists near the boundaries, it makes sense to examine the effects of 
zone refinement and spatial biasing. We will first examine geometric zoning 
without biasing by making the zone widths near the boundary thinner using a 
geometric progression, with a ratio, p = 1.75, for adjacent zones as discussed 
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Table 1 
Physical Parameters for Collisionally Pumped Trap Example 

Parameter Value 

n(2, t = 0) 0 

f(P, v, 2, t = 0) 

f(P > 0, v, 2 = 0, t> 

f(P < 0, v, 2 = 1, t> 

0 

0 

0 

Voigt Parameter 0.0 

K12 2170 

K21 2170 

A21 3.3 

e12 0.25 

c21 0.67 

in Section 2.3. Smaller zones are needed to resolve the atomic population near 
the surface of the slab where the basic assumption of the numerical method, 
that the atomic population is constant within the zone, is violated. 

The upper atomic population is shown in Fig. 2 for the uniformly zoned case 
as well as for the geometrically zoned case. Only the first tenth of the slab 
is shown as the upper level atomic population does not change much past 
what is displayed. In this figure, it is clear that geometric zoning is needed 
to properly capture the shape of the upper level atomic population near the 
surface. To check the correctness of the numerical solution, we have estimated 
the atomic population near the center of the slab with an escape probability 
analysis[7] and have found that it agrees our Monte Carlo solution. 

In Fig. 3, we show the standard deviation for the 100 problem instances used 
to produce the averaged results shown in Fig. 2. The noise envelope for SIMC 
is about a factor of 6 less than that for IMC on this problem, corresponding 
to a factor of 36 improvement in execution speed. Geometric zoning, without 
a compensating importance sampling, has increased the noise envelope near 
the border and has reduced it away from the surface, due to the relatively few 
particles born in the smaller zones. 

The exit spectrum for the collisionally pumped trap example is plotted in Fig. 
4 as a function of frequency in units of Doppler widths for the geometrically 
zoned scheme. Uniform zoning is not shown as it is very poor due to tele- 
portation errors as discussed in Sec. 2.5. While the uniform zone spectrum 
(not shown) for IMC is very noisy, it does give the correct frequency output 
shape since its effective scattering prevents photon teleportation. This figure 
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Fig. 2. Upper Atomic Population for Collisionally Pumped Trap Example 

shows that all three methods predict the same exit frequency distribution 
when geometrically zoned. IMC’s plot is less accurate due to noise which will 
be discussed next, 

When examining the noise envelope for the frequency dependent output, as 
given in Fig. 5 ,  SIMC with weight vectors begins to shine brightly. The noise to 
signal ratio for IMC and SIMC is independent of frequency below 2.5 Doppler 
widths, but then climbs sharply as the frequency is increased and the signal 
drops in the wing of the line. For SIMC with weight vectors, however, the noise 
to signal ratio drops rapidly with increasing frequency, maintaining a good 
statistical accuracy in the wing of the line. This happens because every photon 
carries spectral information deterministically in this method. This advantage 
can be very important if accurate problem output is required in the rarely 
sampled wing of the line. 

When employing geometric zoning, with unbiased emission, the probability 
that a photon is born in the thin zones near the surface is quite small. Biasing 
allows for more sampling to occur in the thinner zones (where the upper atomic 
population is changing and the output spectrum is being influenced) and less 
in the larger zones (where very little is happening). The basic idea behind 
geometric zoning along with biasing is that regions that experience changes in 
upper atomic population are more important to development of the spectrum 
of transported photons. Therefore, they should be sampled more often in order 
to resolve finer structural details. This is accomplished by emitting a k e d  
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Fig. 3. Noise for Upper Atomic Population for Collisionally Pumped Trap Example 

number of particles per zone, leading to a geometric weighting that favors 
emission near the surface. 

As a second step in importance sampling, we add subzone biasing in which 
particles are more likely to be emitted closer to a zone’s edge. As with the 
reasoning behind geometric zoning with an equal number of particles emitted 
per zone, subzone biasing places Monte Carlo photons closer to the interface 
of a zone so that they will more likely cross into another zone and contribute 
to radiative transfer between zones. Monte Carlo photons born deep within a 
zone, at line center, lose a large amount of weight through attenuation before 
reaching a boundary and are therefore less important. 

The effects of biasing are shown in the noise to signal ratio of Fig. 6. Com- 
paring to Fig. 5, all three codes have improved their noise significantly at line 
center, at the cost of the noise becoming worse far from line center. SIMC 
with weight vectors, however, provides a uniformly low noise to signal ratio 
for the complete frequency spectrum. As a note, the effect of subzone biasing 
is not apparent here as the frequency spectrum is developed in the thin zones 
near the surface. Subzone biasing improves the frequency spectrum of photons 
crossing an interface deep inside the slab. 
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Fig. 5. Noise to Signal Ratio in the Emission Spectrum the Fully Biased Collisionally 
Pumped Trap Example 
3.2 Surface Heating Problem 

Our second problem is the line transport version of a slab with surface heating. 
Low intensity radiation impinges on the left surface of an optically thick slab 
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Pumped Trap Example 

perpendicularly. The incoming beam is monochromatic in the wing of the line. 
As the beam penetrates the slab, photons are absorbed and reemitted with a 
spectrum given by the line profile. The slab is initially cold and has an initial 
optical depth of 100 at line center. The problem parameters are given in Table 
2. 

The incoming radiation heats the slab, first heating the surface and then caus- 
ing it to emit radiation with a profile characteristic of the trapping problem 
presented in Sec. 3.1. The excitation then traverses the slab and transmission 
eventually occurs out the far side. This form of heating is interesting in that 
it clearly shows how IMC and SIMC can make systematic errors. The data 
in Figs. 7 and 8 is for time = 200, achieving steady-state at the surface and 
extending to the middle of the slab, but is just short of steady-state for the 
transmitted radiation due to the long time to penetrate the slab. We vary the 
time step size and the number of zones, in order to examine the effect on the 
IMC and SIMC methods. 

In Fig. 7, the upper level atomic population versus position, at time 200, for 
the first 20% of the slab is shown. The ”Base IMC” and ”Base SIMC” curves 
are shown for 21 equally spaced zones, and a time step size of 5.  Also shown is 
the result for the IMC algorithm, with the time step size reduced by a factor 
of 256, and the result for the SIMC algorithm, with the zone size reduced 
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Table 2 
Physical Parameters for Surface Heating Problem 

Parameter Value 

n(2, t = 0) 

f (P1 y12, t = 0) 

! (P > O,v,x = O , t )  

!(P < 0, V, 2 = 1, t )  
Voigt Parameter 

K12 
K2l 

-421 

c12 

C2l 

Incoming Frequency (Doppler Width) 

0 

0 

1 x 1 0 - ~  

0 

0.0 

170 

170 

3.3 

0 

0 

1.3 

by a factor of 10. This refined zoning for the SIMC algorithm provides the 
correct solution for the problem, with the 21 zone IMC solution being close 
to correct in the sense of the average of the correct solution over the coarser 
zoning. The results for SIMC with 21 zones suffer from photon teleportation 
problems, as discussed in Sec. 2.5. The IMC algorithm is less sensitive to 
photon teleportation, as long as one does not refine the time step. When the 
time step for IMC is reduced by a factor of 256, it also suffers teleportation 
error, falling into agreement with SIMC for the 21 zone case. The IMC does 
well for a coarse zone and time step choice (apart from increased noise), but 
the solution moves in the wrong direction when the time step size is reduced. 

In Fig. 8, we show the flux leaving the right hand side of the slab at time 
200. All of the methods, and choices of zoning and time step size, neglecting 
noise, agree pretty well where significant energy is transported far from line 
center. Again, photon teleportation becomes a problem near line center if the 
time step for IMC is refined, or large zone sizes axe used for SIMC. Note the 
very significant advantage for SIMC with weight vectors in the region where 
significant energy is transported. 

The effects of photon teleportation error become clear when we examine the 
time dependent heating of a region near the surface of the slab (the region 
occupied by the first zone for the case of 21 equally spaced zones and average 
of the corresponding zones in the case of 210 zones) and the time dependent 
heating of a similar region in the middle of the slab. Again, IMC and SIMC 
with zone refinement give correct solutions. In Fig. 9, we show the surface 
heating as a function of time. In this case, teleportation error results in slower 
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Fig. 7. Upper Atomic Population for the Surface Heating Example at Steady-State 

heating and an overall colder region. In Fig. 10, we show the heating in the 
middle of the slab as a function of time. Accumulated photon teleportation 
error is overheating this region. This is consistent with the view that photon 
teleportation error moves energy through the material too quickly. 

Overall, this example demonstrates that IMC is much more forgiving than 
SIMC, with respect to bad zoning. One must be careful, however, in becoming 
too reliant on this feature of IMC. IMC will suffer from photon teleportation 
error if the time step is refined, and the user may think that the solution is 
getting better rather than worse. Therefore, we have concluded that the con- 
vergence characteristics of IMC, in response to time step and zone refinement, 
are very poor and it is hard to know that one has a correct solution. SIMC, 
on the other hand, demonstrates rapid convergence in response to time step 
and zone refinement. 

3.3 Milne’s Problem 

In our last test problem, we consider a localized source in the middle of the 
slab and an opacity that is independent of frequency. This approximation for 
the opacity, known as the grey approximation or Milne’s problem [7], offers 
an analytical solution that can be used to check the accuracy of the numerical 
results. 
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Fig. 8. Photon Frequency Distribution Leaving the Right Side of the Slab for Surface 
Heating Example 

We simulate a grey slab by defining only one energy group of width Av. The 
physical configuration of this problem can be seen in Fig. 11. We define a 
central zone to provide a source of collisionally pumped photons of width 
Lac. In this central zone, Clz is to set a small value consistent with the 
approximations required for an analytical solution. The problem is set up 
with 21 equally spaced zones and the physical parameters specified in Table 3. 

The analytical solution is provided in Appendix A. We cannot easily solve for 
n close to the pumped region or near the edge of the slab since the bound- 
ary layers add additional complexity. However, the slope of n far from the 
boundaries may be obtained analytically. 

The predicted slope of n versus position, equation (A-7) from the appendix, 
is -1.7 x The results of IMC and SIMC have been plotted in Fig. 12. 
IMC and SJMC produce slopes of -1.7 x lov4 and -1.3 x respectively. 
Although SIMC has a lower noise figure than IMC, as seen in this graph, 
it produces the wrong slope. The directional dependence of photons, K, as 
defined in equation (B-1) was found experimentally to be about 1.6. 
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Fig. 9. Surface Heating as a Function of Time for Surface Heating Problem 

Table 3 
Physical Parameters for Mike’s Problem 

Parameter Value 

K12 

K2l 

A21 

C12 (Center Zone) 

C12 (Other Zones) 

C2l 

170 

170 

3.3 

1 x 10-~ 

0.0 

0.0 

0.0476 

6 Doppler Widths 

This error for SIMC is due to the teleportation problem discussed in Sec. 2.5. 
When we refine the zoning by a factor of ten, which reduces the optical depth 
per zone, SIMC and IMC both agree with the predicted slope, -1.7 x 
Attempts to use geometric zoning schemes, with thick zones in the middle of 
the uniform regions on the left and right sides of this problem, suffer from the 
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Source 

Vacuum 

I I 
Fig. 11. Milne's Problem Layout 

photon teleportation problems described previously. 

Equation (B-5) from the appendix, displayed below, shows how teleportation 
error affects the predicted slopes for this problem. 
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Fig. 12. Results for Milne's Problem 

The multiplicative term, [tanh (X/2)]/(X/2), modifies the slope based on the 
optical depth per zone, A. As the optical depth is decreased, X goes to 0 and 
the multiplicative term asymptotically approaches 1; so it converges to the 
correct solution. In the other limit as the optical depth is increased, the factor 
goes to 0 and reduces the computed slope. 

In this example problem for SIMC, X is 2.16 (assuming the value of K to be 1.6) 
while a tenfold increase in zoning leads to a X of 0.216. Since in the derivation 
of equation (B-5) we assumed X was much less than 1, we cannot use it to 
double check the computed slope of the example problem. However, we can 
see that a X of 0.216 yields a 0.4% error. While not derived for the collisionally 
pumped trap problem, it does reinforce the observation that you need finer 
zoning in places of large slope while zones with little to no slope do not need 
as much refinement. 

In the IMC method, the effective scattering reduces the absorption and this 
must be taken into account. The resulting equation is very similar to (B-5) 
with a minor change. Since the absorption cross section is fa as given in 
equation (lo), the absorption per zone is reduced by a factor of f. This results 
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in a prediction for the slope for IMC as 

From this expression, we can see how IMC's effective scattering dampens the 
teleportation error. As fl approaches 1 (corresponding to smaller time steps), 
the scattering contribution disappears and this equation approaches equation 
(B-5) and behaves as SIMC. As -f decreases, the multiplicative term from 
above contributes less and less to the behavior of the slope. The limiting 
value of fl is (C12 + C21) / ( C I ~  + C21 + Azl) which represents the most that 
the teleportation error may be dampened. 

4 Conclusions 

In this paper, we have compared Implicit Monte Carlo (IMC) to the Symbolic 
Implicit Monte Carlo (SIMC) technique, using collisional pumping, the sur- 
face heating problem and the Milne problem as diagnostic applications. SIMC 
was also extended with a temporally persistent version of the weight vector 
approach of [5 ] ,  demonstrating the value of weight vectors when accurate spec- 
tral information is desired. In addition to the numerical runs, partial analytical 
solutions were used to verify the accuracy of the Monte Carlo solutions and 
to point to the sources of systematic errors when they occurred. 

An important result of this investigation is to demonstrate conditions where 
SIMC and IMC succeed and fail. In general, SIMC produces much lower noise 
for high opacity problems, with the spectral results using the weight vector 
approach being truly stellar, because the SIMC algorithm does not expend 
computer time performing non-physical effective scattering. This performance 
advantage comes at the price of increased sensitivity to teleportation error that 
results from high opacity per zone and from additional time needed to solve 
a linear system of equations with matrix size based on the number of zones. 
Although teleportation error will also occur for IMC, the level of severity is 
moderated by the portion of the physical absorption that is rolled over into 
effective scattering. Finer zones are required for SIMC than are needed for 
IMC as a result. 

While the effective scattering in IMC dampens the effect of teleportation error, 
it becomes highly subject to this problem when the time step is small. When 
effective scattering is small, sensitivity to teleportation error rises to a level 
equivalent to that of SIMC. This is a somewhat unfortunate situation for 
the IMC algorithm. Generally, we expect that computational results should 
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improve as the time step is decreased. In IMC, the accuracy of results can 
become worse due to the increasing influence of teleportation error and the 
user must be very careful as a result. 

The weight vector extension provides spectral information with a very good 
noise figure, especially for regions of frequency space that would be sampled 
with low probability in the line profile. Global results that are the result 
of frequency integrations do not benefit significantly from this extension (on 
scalar processors) due to the additional cost of computing exponentials for each 
element of the weight vector for each track the particle makes. Weight vectors 
have the advantage that the distance to the next zone has to be computed 
only once. On vector processors, employed in [5], where a vector of a dozen or 
so exponentials would take the same time as a single scalar exponential, the 
weight vector extension of SIMC does not require much additional time and 
improved algorithm performance is worthwhile even if spectral information is 
not required. 

Geometric zoning, so that thin zones are used near transition regions, provides 
a significant improvement in the accuracy of the solution provided by SIMC. 
The length of tracks in the limit of large time step are controlled by the zoning 
in SIMC, and not by effective scattering. Careful zoning in SIMC, which in- 
herently has a smaller execution time than IMC, improves the accuracy of the 
solution. Zones should be thin where the upper level atomic population varies 
rapidly in space. The strategy works well for SIMC if the error introduced by 
photon teleportation is carefully watched. 

IMC can benefit from zone refinement, especially if small time steps are re- 
quired to improve temporal resolution. However, a word of caution must be 
given here. The IMC algorithm can demonstrate poor convergence behavior 
due to teleportation error as the time step is reduced and we have actually 
seen results for IMC actually get worse when the time step is reduced in- 
dependently of the zone size. IMC seems to be somewhat magical in that 
it delivers good results for coarse time steps and zoning, but its results can 
get worse in response to refinement if one is not careful. SIMC responds much 
more systematically to independent zone and time step refinements, with good 
convergence characteristics on both fronts. 

Biasing significantly reduces the noise for SIMC, especially if the line center 
opacity is high. Biasing the spontaneous emission in favor of the thin zones 
near the surface of a transition region and in favor of thin subzones near the 
surface of a centrally located thick zone in cases of high line center opacity, can 
produce results of very high precision and low noise if one wants to examine 
the physics of a boundary layer. The IMC algorithm is less capable in this 
regard. 
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In general, all of the methods examined in this paper have their advantages 
and disadvantages. The teleportation issue provides an advantage for IMC, 
providing relatively coarse zoning and time step sizes are adequate. If one 
wants to perform significant zone and time step refinement in order to produce 
high accuracy results, however, SIMC becomes the method of choice with 
its better convergence behavior. If spectral information is required in a high 
opacity region or a transition region, the SIMC method extended with weight 
vectors provides the best method. 

If the problem of teleportation were eliminated, the one disadvantage of SIMC 
evaporates, and the method would become the method of choice. We will 
examine the possibility of accomplishing this, using a new formulation for the 
transport equation, in future work. 

Appendix 

A. Upper Atomic Population Derivation for Milne’s Example 

The slope of the upper atomic population may be derived by first starting 
with equations (5) and (6) and looking at just the central zone. The flux, F ,  
is defined as usual, 

1 v+Au 

-1 v 

Setting all derivatives with respect to time to zero and integrating the trans- 
port equation (5) over angle and frequency and then adding it to equation (6) 
gives 

- &(1- n). 
3F  
8 X  
-- (A-2) 

Since this problem is symmetric, we can integrate this equation over the right 
half the central zone of width, L,,, giving 

c12 
F = J d;cC12(1- n) = 1 dxC12(l- n) 2 T(1- fi)LeZc (A-3) 

1 1 
;islab +C 

where f i  is the average upper atomic population over the source region. This 
gives the total number of excitations per time. For the rest of this problem, 
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we are only concerned with the right hand side of the slab where C12 is equal 
to 0. 

In order to get an analytical solution outside the pumped regioh, we notice 
that the flux is constant there and it is given by equation (A-3). Guided by 
the diffusion approximation, we now assume that that the radiation field is 
given by the form 

where B(x) is an isotropic Planckian distribution, 

and the second term is a Pl distribution. 

The flux can be found from equation (A-1), 

F = c dp u r d v  (B + pg) = -cAvg 2 
3 

-1 U 

which shows that g is not a function of space. We also note that the line 
profile, 4, must integrate over frequency to give 1. Therefore it must be equal 
to the value l/Av. We now substitute f, from equation (A-4), into equation 
(5) and use the value of B from equation (A-5) and the fact that g does not 
vary in space. n o m  this we get a relationship between B and g which may 
be used in equation (A-6) to obtain a value of F for the left hand side of the 
slab. This F must be equal to the F from equation (A-3). Setting these two 
equal to each other and assuming that n << 1, we obtain a solution for the 
slope of the upper atomic population: 

(A-7) 

B. Teleportation Error Derivation 
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The difficulity in setting up a problem lies in knowing how fine the mesh must 
be to reduce teleportation error. For this problem, we can define a parameter 
to represent the optical depth per zone as given in the following equation: 

(B-1) 
KLzme [K12 - (K21+ K12) A] ~LzmeK12 A =  - 

Av Av 

where K is factor that takes into account directional dependence of the photons. 

- 
F 

Fig. B-1. Zoning Diagram for Milne’s Problem 

This problem has been discretized into equal sized zones with the assumption 
that the upper atomic population, n, is constant across a zone. Since we have 
focused on the right side, n can be represented by a step function with steps 
at each multiple of X as shown in Fig. B-1. In this figure, An is equal to 
no - n1. We are interested in computing F at the midpoint in terms of X and 
then relate this to the slope of the upper atomic population. Since we wish to 
study the effects of small optical depth per zone length, we assume X is much 
less than one. Doing so allows us to approximate the angle integrated photon 
density distribution by integrating the emission in each zone and differencing 
the flux from the right and left as 

The steady-state solution, B, has slightly changed from its form in equation 
(A-5) to its new form as 

03-31 

The bracketed terms in equation (B-2) can be summed to get the following 
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solution for F: 

1 A21 1 
3 

= -AUC 
2c IK12 - (K21+ K12) f i ]  tanh (X/2) 

The slope can now be approximated by using the definition of X from equation 
(B-1) along with equation (B-5) to arrive at 

(B-5) -e--- An dn 
dx L*me A21Au2 

3 [K12 - (K21+ K12) fi12 tanh(X/2) 
X/2 . 

- - -F 
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